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Abstract

Real-world players in games are susceptible to making errors. In the quantal-
response model, the players perceive utilities that include random errors. Here,
the players’ responses are probabilistic, with players having a higher likelihood
of choosing better responses than worse responses. We study the dynamics
of the quantal-response model by analyzing the stationary distribution of a
Markov chain. The probability of transitioning from one strategy profile to
another is determined by quantal-responses. The stationary distribution is a
joint probability distribution on the players’ actions. We consider a game in
which the players are divided into two groups, and the utility of a player in one
group depends only on the actions of the players in the other group. We find that
if we allow all the players in such a game to simultaneously revise their responses,

* listed in alphabetical order



the stationary distribution is the product of the marginal distributions of each
group.

1 Definitions and Notation

1.1 Quantal-Response Normal-Form Game

Let G = (N, S,u) be a normal-form game. N = {1,2,...,n} is the set of
players. For each player ¢ € N, there is a strategy set S; = {s;1, Si2, ..., 8i.J, } of
J; pure strategies. Each player ¢ € IV also has a payoff function u; : S — R,
where S = [] S;.

iEN
We denote A = [] A; as the set of mixed strategy profiles, where A; is
iEN
the set of probability measures on S;. For all p; € A;, p; : S; — R, where
> pi(sij) =1, and p;(si;) > 0, Vs;; € S;. To simplify notation, we denote
qujESi
pij = pi(sij)-
The payoff function of each player i € N is u;(p) = > p(s)u;(s), where

ses
p(s) = ]I pi(si). We denote ¢; = R’ as the space of possible payoffs for
iEN
strategies that player ¢ could adopt. Let ¢ = ] ¢;. We define @ : A — ¢, by
i=1
a(p) = (@1 (p), ..., n(p)), where @;(p) € R
and where

[ui(p)]; = wij(p) = wi(sij, p—i)-
We consider the scenario in which each player’s utility for each action is
subject to random error. For each player i € N, Vj € {1, ..., J;}, Vp € A,

i (p) = Ui (p) + €.

Player i’s error vector is defined as ¢; = (&i1,¢€42,...,€45,). The errors ¢; are
distributed according to joint density f;(e;). We say that f = (f1,..., fn) is
admissible if the marginal distribution of each f; exists for each ¢;; and E[e;] = 0.

Following the notation in [2], given p € A, for all 4(p) = (41 (p), ..., un(p)),
where @;(p) € R’ Vi, the ij-response set R;;(u;(p)) C R’ is defined as

Ri;(u;(p)) = {e; e R”

Ui (p) + €55 > Ui (p) + e, VE = 1,..., J; }.

In other words, the ij-response set R;;(u;(p)) is the set of all error vectors ¢;
that make action j the dominant strategy for player ¢ when all other players
perform strategy profile p. The probability that player ¢ € N will select strategy
j € S; when given @;(p) € R’ is the quantal-response function o;;(@;(p)), which
is defined as

0 (:(p)) = /R PR



1.2 Logit-Response (note: not used in Theorem)

A particularly interesting case of the quantal-response function is the logistic
quantal-response function. Recall f = (f1,..., fn), Where the errors &; € R”:
are distributed according to joint density f;(¢;). For some § > 0, the lo-
gistic quantal-response function gives the optimal choice behavior when f;,
Vi € N, is an extreme value distribution with the cumulative distribution func-
tion Fj(e;5) = e=¢ "7 and the errors €;; are independent. Specifically, for
some 1;(z) € R, the logistic quantal-response function is

eBui(sij,x—i)
0ij(ti(z)) = 7.
S eBuilsin.e—i)
k=1

1.3 Markov Chain

A Markov chain is a discrete-time stochastic process defined by a sequence
of random variables X7, X, ..., X, that satisfies the Markov property

P(Xi+1 = .’L‘|X1 = l‘l,XQ = T2, Xn = J?n) = P(Xi—i-l = J,‘|XZ = J)Z‘),

where P(X; = 1, X2 = @9, ..., X;, = x,,) > 0. The random variables X, Xo, ..., X,
take values on the countable state space, which we define as the set of action
profiles S in Section [1.1

The initial state X is chosen at random according to a distribution A on S,
which assigns probability \; to state ¢ via

P(X; = i) = \i.

The Markov chain has an associated stochastic transition matrix P = [p;;],
where 7, j € S. Here, p;; is the probability of state X}, being action profile ¢ and
transitioning to action profile j. That is to say p;; = P(Xx41 = j| Xk = 4). For

eachi €S, Y p;; = 1. Also, p;; > 0, Vp;j.
jES

1.4 Transition Matrix of the Markov Chain

We consider a few cases of the transition matrix P that are differentiated by
which players receive revision opportunities in a period. Just as in [1], we will
define learning dynamics as a behavioral rule (such as logit responding) and a
revision process.

1.4.1 Asynchronous Learning (note: not used in Theorem)

We first consider asynchronous learning, in which exactly one player receives
a revision opportunity in a period. For any player i € N, we define m;(x,y)
as the likelihood of player i receiving a revision opportunity and changing the
current action profile z into the action profile y. In other words, we have



0 if Tr_; # Y—i ’

where x_; and y_; are the action profiles without the action of player ¢ and y; is
the action of player ¢ in strategy profile y. Then, transition matrix P is defined
n

as P = [pay], where py, = % S mi(z,y).
i=1

mi(x,y) = {O'iyi (u;(x)) fo_;=y_ "

1.4.2 Simultaneous Learning

We also consider the case in which all players receive revision opportunities
in every period. Here, the transition matrix P is defined as P = [psy], where

Py = 11 iy, (w:(2))-

ieEN
1.5 Update Function Representation of Markov Chain (note:

not used in Theorem)

An equivalent representation of the Markov chain replaces the probabilistic

transitions of a Markov chain with a deterministic update function that takes
as input realizations of a uniform random variable. Let U,, n > 1 be a sequence
of independent and identically distributed random variables, in which U,, ~
Uniform[0, 1], Vn > 1. For clarity, let us enumerate the elements in the state

space S from 1 to |S|. Consider the piecewise function ¢ : S x [0,1] — S, such
that

if Uy, € [0, pi1]
2 if Uy, € (pi1, pin + pio]

j—1 J
SiUN =5 iU, € <Z P, Zpit}
t=1 t=1

- .
S| i Une| S pil.

t=1

Starting in state X,,, Vn > 1, the next state X,y is determined by the following

Xn+1 = Qb(Xna Un)'

1.6 Graphical Games

Consider the game G = (V, S, u) with V = {1,...,n}, where n = |V] players.
Also, consider the simple, undirected graph G = (V, E) with V as the set of
vertices and E as the set of edges. We define the game G as a graphical game
on G if each player’s utility is a function of its neighbors on G. In other words,
G is a graphical game on G if for all 4,5 € V, if i # j and (4,5) ¢ E, then



Va € S, u;(a) = u;(a’) where action profile @’ is the same as a in all but the
4" position.

2 Theorem

Let G = (V, E) be a bipartite graph with partitions Gy and G;. Let G =
(V,S,u) be a graphical game on G. If the quantal-response dynamics exhibit
simultaneous learning, then the stationary distribution (7 = lim,, AP™, for ar-
bitrary initial distribution A) of the quantal-response dynamics is a product
measure. Specifically,

P =,
such that
T =T X T,

where 7 is a measure on Sy = Ilxeg, Sk and mp is a measure on S = Ieg, Sk-

2.1 Proof

In the bipartite graph GG, we know that the utilities of players in one par-
tition depend only on the actions of the players in the other partition. More
specifically, for player i € G;, j € {0,1}, and for p € A,

wi(p) = gi(p™7),
for some function g; : I Sk | — RYi, where p~7 is the mixed strategy
keg(i+1)1vlod2

profile of all players that are not in partition G;. Therefore, for z,y € 5,

Oiy; (’H’l(x)) = Oiy; (gi(x_j»'

Therefore,
Py = H Uiyi(gi(xl)) x H Uiyi(gi(xo))’

1€Go i€G1
where z° and x' are the mixed strategy profiles of all the players in partition
Go and G, respectively.
Lemma 1. P maps product measures to product measures.
Proof. Let Sg = Ilkeg, Sk and S1 = Ilieg, Sk denote the sets of strategy profiles
restricted to Gy and G;. Suppose p € A can be decomposed as pg X 1, where
o is a measure on Sy and p4 is a measure on S1. Then

pP = (Z p () H iy, (gi(x")) % po(2) H O'iyi(gi(xo))>
yeS

xcS 1€Go 1€G1

S ) ] awa@) | x | 32 o) T o (9:2)

zleS; i€Go IOGSO i€Gy yes

=1y X Uy,



where

vo(y”) = Y () [ oipelai(ah),

€S 1€Go
() =Y o) [] i (9:(2)
20€8y i€G1
as desired. ]

Lemma 2. The set of product probability measures is sequentially closed.

Proof. Let X = Xy x X1, and II denote the set of corresponding product proba-
bility measures on X, and fix a sequence (fn )n = (o, )n X (pi1,, )n € I with limit
p. For A C Xo, B C X1, (A x B) = limy, pin, (A x B) = limy, (po,, (A)p,, (B)) =
lim,, (pn (A X X1)pun(Xo x B)) = lim, (un(A x X7)) - lim, (u,(Xo X B)) =
limy, (o, (A)) - limy, (@1, (B)) € I1.

O

Since P is the transition matrix of an ergodic Markov chain, there is a
unique equilibrium distribution 7, such that for all initial distributions A\, 7 =
lim,, AP". Let Ao denote a measure in A that can be decomposed as a product
of measures on Sy and S; (such as any pure strategy profile). By the above
lemmas, © = lim,, A\¢’P™ is a product measure.
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