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Abstract

Real-world players in games are susceptible to making errors. In the quantal-
response model, the players perceive utilities that include random errors. Here,
the players’ responses are probabilistic, with players having a higher likelihood
of choosing better responses than worse responses. We study the dynamics
of the quantal-response model by analyzing the stationary distribution of a
Markov chain. The probability of transitioning from one strategy profile to
another is determined by quantal-responses. The stationary distribution is a
joint probability distribution on the players’ actions. We consider a game in
which the players are divided into two groups, and the utility of a player in one
group depends only on the actions of the players in the other group. We find that
if we allow all the players in such a game to simultaneously revise their responses,

* listed in alphabetical order
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the stationary distribution is the product of the marginal distributions of each
group.

1 Definitions and Notation

1.1 Quantal-Response Normal-Form Game

Let G = (N,S, u) be a normal-form game. N = {1, 2, ..., n} is the set of
players. For each player i ∈ N , there is a strategy set Si = {si1, si2, ..., siJi

} of
Ji pure strategies. Each player i ∈ N also has a payoff function ui : S → R,
where S =

∏
i∈N

Si.

We denote ∆ =
∏
i∈N

∆i as the set of mixed strategy profiles, where ∆i is

the set of probability measures on Si. For all pi ∈ ∆i, pi : Si → R, where∑
sij∈Si

pi(sij) = 1, and pi(sij) ≥ 0, ∀sij ∈ Si. To simplify notation, we denote

pij = pi(sij).
The payoff function of each player i ∈ N is ui(p) =

∑
s∈S

p(s)ui(s), where

p(s) =
∏
i∈N

pi(si). We denote ζi = RJi as the space of possible payoffs for

strategies that player i could adopt. Let ζ =
n∏

i=1

ζi. We define ū : ∆ → ζ, by

ū(p) = (ū1(p), ..., ūn(p)), where ūi(p) ∈ RJi

and where
[ūi(p)]j = ūij(p) = ui(sij , p−i).

We consider the scenario in which each player’s utility for each action is
subject to random error. For each player i ∈ N , ∀j ∈ {1, ..., Ji}, ∀p ∈ ∆,

ûij(p) = ūij(p) + εij .

Player i’s error vector is defined as εi = (εi1, εi2, ..., εiJi
). The errors εi are

distributed according to joint density fi(εi). We say that f = (f1, ..., fn) is
admissible if the marginal distribution of each fi exists for each εij and E[εi] = 0.

Following the notation in [2], given p ∈ ∆, for all ū(p) = (ū1(p), ..., ūn(p)),
where ūi(p) ∈ RJi , ∀i, the ij-response set Rij(ūi(p)) ⊆ RJi is defined as

Rij(ūi(p)) = {εi ∈ RJi |ūij(p) + εij ≥ ūik(p) + εik,∀k = 1, ..., Ji}.

In other words, the ij-response set Rij(ūi(p)) is the set of all error vectors εi
that make action j the dominant strategy for player i when all other players
perform strategy profile p. The probability that player i ∈ N will select strategy
j ∈ Si when given ūi(p) ∈ RJi is the quantal-response function σij(ūi(p)), which
is defined as

σij(ūi(p)) =

∫
Rij(ūi(p))

f(ε)dε.
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1.2 Logit-Response (note: not used in Theorem)

A particularly interesting case of the quantal-response function is the logistic
quantal-response function. Recall f = (f1, ..., fn), where the errors εi ∈ RJi

are distributed according to joint density fi(εi). For some β ≥ 0, the lo-
gistic quantal-response function gives the optimal choice behavior when fi,
∀i ∈ N , is an extreme value distribution with the cumulative distribution func-

tion Fi(εij) = e−e−βεij−γ

and the errors εij are independent. Specifically, for
some ūi(x) ∈ RJi , the logistic quantal-response function is

σij(ūi(x)) =
eβui(sij ,x−i)

Ji∑
k=1

eβui(sik,x−i)

.

1.3 Markov Chain

A Markov chain is a discrete-time stochastic process defined by a sequence
of random variables X1, X2, ..., Xn that satisfies the Markov property

P(Xi+1 = x|X1 = x1, X2 = x2, ...Xn = xn) = P(Xi+1 = x|Xi = xi),

where P(X1 = x1, X2 = x2, ..., Xn = xn) > 0. The random variablesX1, X2, ..., Xn

take values on the countable state space, which we define as the set of action
profiles S in Section 1.1.

The initial state X1 is chosen at random according to a distribution λ on S,
which assigns probability λi to state i via

P(X1 = i) = λi.

The Markov chain has an associated stochastic transition matrix P = [pij ],
where i, j ∈ S. Here, pij is the probability of state Xk being action profile i and
transitioning to action profile j. That is to say pij = P(Xk+1 = j|Xk = i). For
each i ∈ S,

∑
j∈S

pij = 1. Also, pij ≥ 0, ∀pij .

1.4 Transition Matrix of the Markov Chain

We consider a few cases of the transition matrix P that are differentiated by
which players receive revision opportunities in a period. Just as in [1], we will
define learning dynamics as a behavioral rule (such as logit responding) and a
revision process.

1.4.1 Asynchronous Learning (note: not used in Theorem)

We first consider asynchronous learning, in which exactly one player receives
a revision opportunity in a period. For any player i ∈ N , we define mi(x, y)
as the likelihood of player i receiving a revision opportunity and changing the
current action profile x into the action profile y. In other words, we have
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mi(x, y) =

{
σiyi

(ūi(x)) if x−i = y−i

0 if x−i ̸= y−i

, (1)

where x−i and y−i are the action profiles without the action of player i and yi is
the action of player i in strategy profile y. Then, transition matrix P is defined

as P = [pxy], where pxy = 1
n

n∑
i=1

mi(x, y).

1.4.2 Simultaneous Learning

We also consider the case in which all players receive revision opportunities
in every period. Here, the transition matrix P is defined as P = [pxy], where
pxy =

∏
i∈N

σiyi
(ūi(x)).

1.5 Update Function Representation of Markov Chain (note:
not used in Theorem)

An equivalent representation of the Markov chain replaces the probabilistic
transitions of a Markov chain with a deterministic update function that takes
as input realizations of a uniform random variable. Let Un, n ≥ 1 be a sequence
of independent and identically distributed random variables, in which Un ∼
Uniform[0, 1], ∀n ≥ 1. For clarity, let us enumerate the elements in the state
space S from 1 to |S|. Consider the piecewise function ϕ : S × [0, 1] → S, such
that

ϕ(i, Un) =



1 if Un ∈ [0, pi1]

2 if Un ∈ (pi1, pi1 + pi2]

...

j if Un ∈
(

j−1∑
t=1

pit,
j∑

t=1
pit

]
...

|S| if Un ∈

(
|S|−1∑
t=1

pit, 1

]
.

Starting in state Xn, ∀n ≥ 1, the next state Xn+1 is determined by the following

Xn+1 = ϕ(Xn, Un).

1.6 Graphical Games

Consider the game G = (V, S, u) with V = {1, ..., n}, where n = |V | players.
Also, consider the simple, undirected graph G = (V,E) with V as the set of
vertices and E as the set of edges. We define the game G as a graphical game
on G if each player’s utility is a function of its neighbors on G. In other words,
G is a graphical game on G if for all i, j ∈ V , if i ̸= j and (i, j) /∈ E, then
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∀a ∈ S, ui(a) = ui(a
j) where action profile aj is the same as a in all but the

jth position.

2 Theorem

Let G = (V,E) be a bipartite graph with partitions G0 and G1. Let G =
(V, S, u) be a graphical game on G. If the quantal-response dynamics exhibit
simultaneous learning, then the stationary distribution (π = limn λPn, for ar-
bitrary initial distribution λ) of the quantal-response dynamics is a product
measure. Specifically,

πP = π,

such that
π = π0 × π1,

where π0 is a measure on S0 = Πk∈G0
Sk and π1 is a measure on S1 = Πk∈G1

Sk.

2.1 Proof

In the bipartite graph G, we know that the utilities of players in one par-
tition depend only on the actions of the players in the other partition. More
specifically, for player i ∈ Gj , j ∈ {0, 1}, and for p ∈ ∆,

ūi(p) = gi(p
−j),

for some function gi :

( ∏
k∈G(j+1)mod2

Sk

)
→ RJi , where p−j is the mixed strategy

profile of all players that are not in partition Gj . Therefore, for x, y ∈ S,

σiyi
(ūi(x)) = σiyi

(gi(x
−j)).

Therefore,

pxy =
∏
i∈G0

σiyi
(gi(x

1))×
∏
i∈G1

σiyi
(gi(x

0)),

where x0 and x1 are the mixed strategy profiles of all the players in partition
G0 and G1, respectively.

Lemma 1. P maps product measures to product measures.

Proof. Let S0 = Πk∈G0Sk and S1 = Πk∈G1Sk denote the sets of strategy profiles
restricted to G0 and G1. Suppose µ ∈ ∆ can be decomposed as µ0 × µ1, where
µ0 is a measure on S0 and µ1 is a measure on S1. Then

µP =

(∑
x∈S

µ1(x
1)
∏
i∈G0

σiyi(gi(x
1))× µ0(x

0)
∏
i∈G1

σiyi(gi(x
0))

)
y∈S

=

 ∑
x1∈S1

µ1(x
1)
∏
i∈G0

σiyi
(gi(x

1))

×

 ∑
x0∈S0

µ0(x
0)
∏
i∈G1

σiyi
(gi(x

0))


y∈S

= ν0 × ν1,
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where
ν0(y

0) =
∑

x1∈S1

µ1(x
1)
∏
i∈G0

σiy0
i
(gi(x

1)),

ν1(y
1) =

∑
x0∈S0

µ0(x
0)
∏
i∈G1

σiy1
i
(gi(x

0))

as desired.

Lemma 2. The set of product probability measures is sequentially closed.

Proof. Let X = X0×X1, and Π denote the set of corresponding product proba-
bility measures on X, and fix a sequence (µn)n = (µ0n)n×(µ1n)n ∈ Π with limit
µ. For A ⊂ X0, B ⊂ X1, µ(A×B) = limn µn(A×B) = limn(µ0n(A)µ1n(B)) =
limn(µn(A × X1)µn(X0 × B)) = limn(µn(A × X1)) · limn(µn(X0 × B)) =
limn(µ0n(A)) · limn(µ1n(B)) ∈ Π.

Since P is the transition matrix of an ergodic Markov chain, there is a
unique equilibrium distribution π, such that for all initial distributions λ, π =
limn λPn. Let λ0 denote a measure in ∆ that can be decomposed as a product
of measures on S0 and S1 (such as any pure strategy profile). By the above
lemmas, π = limn λ0Pn is a product measure.
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